Fork me on GitHub

tensorflow实现手写体数字识别

调用tensorflow实现手写体数字识别。

内容参考自北京大学曹健教授的tensorflow课程,在此感谢

代码原址:https://github.com/cj0012/AI-Practice-Tensorflow-Notes

之前在人工智能课上自己手动搭建过一个BP神经网络实现MNIST数据集的手写体数字识别,使用的是c++,最终准确率的上限在95%至96%左右(毕竟水平有限)。这次不一样了,使用tensorflow进行实验,准确率确实提高了不少。可能有人会觉得tensorflow有点过时,现在的大企业不怎么用tensorflow了,但我觉得,对于初学者来说,tensorflow还是不错的选择。

实验环境

  • ubuntu 16.04
  • python 2.7.13
  • tensorflow 1.3.0
  • MNIST数据集

我不清楚windows下可不可以装tensorflow,反正很久以前是不行,现在好像可以了???

总体框架

主要分为三个部分如下:

  • 前向传播过程(mnist_forward.py)
  • 进行网络参数优化方法的反向传播过程 ( mnist_backward.py )
  • 验证模型准确率的测试过程(mnist_test.py)

每个部分都单独写成了一个模块文件。

源代码

mnist_forward.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import tensorflow as tf
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500
def get_weight(shape, regularizer):
w = tf.Variable(tf.truncated_normal(shape, stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
return w
def get_bias(shape):
b = tf.Variable(tf.zeros(shape))
return b
def forward(x, regularizer):
w1 = get_weight([INPUT_NODE, LAYER1_NODE], regularizer)
b1 = get_bias([LAYER1_NODE])
y1 = tf.nn.relu(tf.matmul(x, w1) + b1)
w2 = get_weight([LAYER1_NODE, OUTPUT_NODE], regularizer)
b2 = get_bias([OUTPUT_NODE])
y = tf.matmul(y1, w2) + b2
return y

mnist_backward.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import os
STEPS = 50000
BATCH_SIZE = 200
LEARNING_RATE_BASE = 0.1
LEARNING_RATE_DECAY = 0.99
REGULIZER = 0.0001
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "mnist_model"
def backward(mnist):
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
y = mnist_forward.forward(x, REGULIZER)
global_step = tf.Variable(0, trainable = False)
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_,-1))
cem = tf.reduce_mean(ce)
loss = cem + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase = True
)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
ema_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([train_step, ema_op]):
train_op = tf.no_op(name = 'train')
saver = tf.train.Saver()
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
for i in range(STEPS):
xs,ys = mnist.train.next_batch(BATCH_SIZE)
_,loss_value,step = sess.run([train_op, loss, global_step], feed_dict={x:xs, y_:ys})
if i % 1000 == 0:
print "after %d training steps, loss on training batch is %g" % (step, loss_value)
saver.save(sess, os.path.join(MODEL_SAVE_PATH,MODEL_NAME), global_step=global_step)
def main():
mnist = input_data.read_data_sets("./data/", one_hot=True)
backward(mnist)
if __name__ == '__main__':
main()

mnist_test.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#coding utf-8
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import mnist_backward
TEST_INTERVAL_SECS = 5
def test(mnist):
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
y = mnist_forward.forward(x, None)
ema = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
ema_restore = ema.variables_to_restore()
saver = tf.train.Saver(ema_restore)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy, feed_dict={x:mnist.test.images, y_:mnist.test.labels})
print "after %s training steps, test accuracy = %g" % (global_step, accuracy_score)
else:
print "no checkpoint file found"
return
time.sleep(TEST_INTERVAL_SECS)
def main():
mnist = input_data.read_data_sets("./data/", one_hot=True)
test(mnist)
if __name__ == '__main__':
main()

代码解析

mnist_forward.py

1
2
3
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500

在前向传播过程中,规定网络输入结点为 784 个(代表每张输入图片的像素个数),隐藏层节点 500 个(一层),输出节点 10 个(表示输出为数字 0-9的十分类)

1
w = tf.Variable(tf.truncated_normal(shape, stddev=0.1))

参数满足截断正态分布

1
2
if regularizer != None:
tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))

使用正则化,将每个参数的正则化损失加到总损失中

mnist_backward.py

1
2
3
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_,-1))
cem = tf.reduce_mean(ce)
loss = cem + tf.add_n(tf.get_collection('losses'))

softmax()函数与交叉熵一起使用,再加上正则化损失以此计算得到总的偏差值

1
2
3
4
5
6
7
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase = True
)

使用指数衰减学习率使模型在训练的前期快速收敛接近较优解

1
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)

使用梯度下降算法

1
2
3
4
5
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
ema_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([train_step, ema_op]):
train_op = tf.no_op(name = 'train')

在模型训练时引入滑动平均使模型在测试数据上表现的更加健壮

1
saver = tf.train.Saver()
1
2
3
ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
1
saver.save(sess, os.path.join(MODEL_SAVE_PATH,MODEL_NAME), global_step=global_step)

断点续训,因为训练时间比较长,万一断电了呢。。。为了使得之前训练好的参数(w,b)能够保留下来,调用了saver进行保存和恢复

mnist_test.py

1
TEST_INTERVAL_SECS = 5
1
time.sleep(TEST_INTERVAL_SECS)

每隔五秒钟测试一次

1
2
3
ema = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGES_DECAY)
ema_restore = ema.variables_to_restore()
saver = tf.train.Saver(ema_restore)

实例化具有滑动平均的 saver 对象,从而在会话被加载时,模型中的所有参数被赋值为各自的滑动平均值,增强模型的稳定性

操作步骤

可能你已经注意到了,mnist_forward.py中并没有main函数(说明这个文件只是一个模块用来被其他文件调用,本例中是mnist_backward.py调用了mnist_forward.py),而另两个文件都有main函数。

  • 终端输入python mnist_backward.py,开始训练,会显示实时的损失值,如:after 15005 training steps, loss on training batch is 0.159981
  • 再开一个终端,输入python mnist_test.py,进行同步的测试(每五秒一次),会显示实时的损失值,如:after 15005 training steps, test accuracy = 0.979

实验结果

代码里设置的总循环数是50000次,但是我只跑到15000次(毕竟时间比较久),但已经能有98%的准确率了,如果全跑完的话,预计能达到99%以上。

donate the author